Print and online copies
Items on Display:
- Aigner, M. (1984). Graphentheorie: eine Entwicklung aus dem 4-Farben Problem. Stuttgart: B.G. Teubner. Library Catalog Record
- Aigner, M. (1987). Graph theory: a development from the 4-color problem. Moscow, ID: BCS Associates. Library Catalog Record
- Allaire, F. (1978). Another proof of the four colour theorem. I. In Proceedings of the Seventh Manitoba Conference on Numerical Mathematics and Computing (pp. 3–72).Winnipeg: Utilitas Mathematica Publishing. Library Catalog Record
- Appel, K., & Haken, W. (1976). Every planar map is four colorable. Bulletin of the American Mathematical Society, 82(5), 711–712. Full-text available online (subscription required).
- Appel, K., & Haken, W. (1976). Every planar map is four colorable. Journal of Recreational Mathematics, 9(3), 161. Library Catalog Record
- Appel, K., & Haken, W. (1976). Special announcement: A proof of the four color theorem. Discrete Mathematics, 16(2), 179–180. Full-text available online (subscription required).
- Appel, K., & Haken, W. (1976). The existence of unavoidable sets of geographically good configurations. Illinois Journal of Mathematics, 20(2), 218–297. Full-text available online (subscription required).
- Appel, K., & Haken, W. (1977). Every planar map is four colorable. Part I: Discharging. Illinois Journal of Mathematics, 21(3), 429–490. Full-text available online (subscription required).
- Appel, K, & Haken, W. (1979). An unavoidable set of configurations in planar triangulations. Journal of Combinatorial Theory, Series B, 26(1), 1–21. Full-text available online (subscription required).
- Appel, K., & Haken, W. (1986). The four color proof suffices. The Mathematical Intelligencer, 8(1), 10–20. Full-text available online (subscription required).
- Appel, K., & Haken, W. (1989). Every Planar Map is Four Colorable. American Mathematical Society, 98. Full-text available online (subscription required).
- Appel, K., Haken, W., & Koch, J. (1977). Every planar map is four colorable. Part II: Reducibility. Illinois Journal of Mathematics, 21(3), 491–567. Full-text available online (subscription required).
- Ball, W. W. R., & Coxeter, H. S. M. (1987). Map-colouring problems. In W. W. R. Ball & H. S. M. Coxeter, Mathematical recreations and essays (13th ed., p. 222). New York: Dover Publications. Library Catalog Record
- Bar-Natan, D. (1997). Lie algebras and the Four Color Theorem. Combinatorica, 17(1), 43–52. Full-text available online (subscription required).
- Bernhart, F. R. (1977). A digest of the four color theorem. Journal of Graph Theory, 1(3), 207-225. Full-text available online (subscription required).
- Biggs, N. L. (1983). De morgan on map colouring and the separation axiom. Archive for History of Exact Sciences, 28(2), 165–170. Full-text available online (subscription required).
- Biggs, N. L., Lloyd, E. K., & Wilson, R. J. (1976). Graph theory: 1736–1936. Oxford: Clarendon Press. Library Catalog Record
- Birkhoff, G. D. (1913). The Reducibility of Maps. American Journal of Mathematics, 35(2), 115–128. Full-text available online (subscription required).
- Burger, E. B., & Morgan, F. (1997). Fermat’s Last Theorem, the Four Color Conjecture, and Bill Clinton for April Fools’ Day. The American Mathematical Monthly, 104(3), 246–255. Full-text available online (subscription required).
- Chartrand, G., & Lesniak, L. (2005). Graphs & digraphs (4th ed.). Boca Raton: Chapman & Hall/CRC. Library Catalog Record
- Dailey, D. P. (1980). Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete. Discrete Mathematics, 30(3), 289–293. Full-text available online (subscription required).
- Dirac, G. A., & Stojaković, M. D. (1960). Problem četiri boje (Vol. 16). Beograd: Katedra za matematiku Elektrotehničkog fakulteta univerziteta u Beogradu. Library Catalog Record
- Dowek, G., Guillot, P., & Roman, M. (2015). Computation, proof, machine: Mathematics enters a new age (1st ed.). New York, NY: Cambridge University Press. Full-text available online (subscription required).
- Dynkin, E. B., & Uspenski, W. A. (1979). Mathematische Unterhaltungen: Aufgaben über das Mehrfarbenproblem, aus der Zahlentheorie und der Wahrscheinlichkeitsrechnung. Köln: Aulis Verlag Deubner. Library Catalog Record
- Errera, A. (1927). Exposé historique du problème des quatre couleurs. Periodico di Matematiche. IV. Serie, 7, 20–41. Library Catalog Record
- Fritsch, R. (1994). Der Vierfarbensatz: Geschichte, topologische Grundlagen, und Beweisidee. Mannheim: B.I.-Wissenschaftsverlag. Library Catalog Record
- Fritsch, R., & Fritsch, G. (1998). The Four-Color Theorem: History, Topological Foundations, and Idea of Proof. New York, NY: Springer New York. Full-text available online (subscription required).
- Gonthier, G. (2008). Formal Proof – The Four-Color Theorem. Notices of the American Mathematical Society, 55(11), 1382–1393. Full-text available online (subscription required).
- Guthrie, F. (1880). 9. Note on the Colouring of Maps. In Proceedings of the Royal Society of Edinburgh, 10, 727–728. Full-text available online (subscription required).
- Hadwiger, H. (1943). Über eine Klassifickation der Strekenkomplexe. In Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich (Vol. 88). Zürich: Fäsi & Beer. Library Catalog Record
- Haken, W. (1977). An attempt to understand the four color problem. Journal of Graph Theory, 1(3), 193-206. Full-text available online (subscription required).
- Haken, W. (1980). Combinatorial aspects of some mathematical problems. In Proceedings of the International Congress of Mathematicians (pp. 953–961). Toronto: University of Toronto Press. Library Catalog Record
- Heawood, P. J. (1890). Map-colour theorem. The Quarterly Journal of Pure and Applied Mathematics, 24, 332–338. Library Catalog Record
- Heawood, P. J. (1949). Map-colour theorem. Proceedings of the London Mathematical Society, 2(51), 161-175. Full-text available online (subscription required).
- Heesch, H. (1969). Untersuchungen zum Vierfarbenproblem (Vol. 810). Mannheim: Bibliographisches Institut. Library Catalog Record
- Hitotsumatsu, S. (1978). Shishiki mondai: sono tanjō kara kaiketsu made. Tōkyō: Kōdansha, cShōwa 53. Library Catalog Record
- Hudson, H. (2003). Four Colors Do Not Suffice. The American Mathematical Monthly, 110(5), 417–423. Full-text available online (subscription required).
- Kauffman, L. H. (1994). Spin networks, topology and discrete physics. In Yang, C. N., & Ge, M. L. (Eds.), Braid group, knot theory and statistical mechanics. II (Vol. 17, pp. 234–274). River Edge, NJ: World Scientific Publishing Co., Inc. Library Catalog Record
- Koch, J. A. (1976). Computation of four color irreducibility. Urbana: Department of Computer Science, University of Illinois at Urbana-Champaign. Full-text available online (subscription required).
- May, K. O. (1965). The Origin of the Four-Color Conjecture. Isis, 56(3), 346–348. Full-text available online (subscription required).
- Mayer, J. (1974). Nouvelles réductions dans le problème des quatre couleurs. Montpellier: Université des sciences et techniques du Languedoc, U. E. R. de mathématiques. Library Catalog Record
- Nash-Williams, C. S. J. A. (1967). Infinite graphs – A survey. Journal of Combinatorial Theory, 3(3), 286–301. Full-text available online (subscription required).
- Nelson, R., & Wilson, R. (1990). Graph colourings. Essex, England: Longman. Library Catalog Record
- Ore, Ø. (1967). The four-color problem. New York-London: Academic Press. Full-text available online (subscription required).
- Osgood, T. W. (1973). An Existence Theorem for Planar Triangulations With Vertices of Degree Five, Six, and Eight. University of Illinois at Urbana-Champaign. Full-text available online (subscription required).
- Robertson, N., Sanders, D., Seymour, P., & Thomas, R. (1997). The Four-Colour Theorem. Journal of Combinatorial Theory, Series B, 70(1), 2–44. Full-text available online (subscription required).
- Saaty, T. L., & Kainen, P. C. (1986). The four-color problem: assaults and conquest. New York : Dover Publications. Library Catalog Record
- Stewart, I. (2013). Visions of Infinity: The Great Mathematical Problems. New York, NY: Basic Books. Library Catalog Record
- Swart, E. R. (1980). The Philosophical Implications of the Four-Color Problem. The American Mathematical Monthly, 87(9), 697–707. Full-text available online (subscription required).
- Tait. (1880). 4. On the Colouring of Maps. In Proceedings of the Royal Society of Edinburgh, 10, 501–503. Full-text available online (subscription required).
- Tait. (1880). 10. Remarks on the previous Communication. In Proceedings of the Royal Society of Edinburgh, 10, 729–729. Full-text available online (subscription required).
- Thomas, J. M. (1971). The four color theorem (Rev. ed.). Philadelphia. Library Catalog Record
- Thomas, J. M. (1977). The four color theorem (Final ed.). Durham, N.C. Library Catalog Record
- Thomas, R. (1998). An Update on the Four-Color Theorem. Notices of the American Mathematical Society, 45(7), 848-859. Full-text available online (subscription required).
- Thomas, R. (1999). Recent excluded minor theorems for graphs. In J. D. Lamb, & D. A. Preece (Eds.), Surveys in combinatorics, 1999 (Vol. 267, pp. 201–222). New York: Cambridge University Press. Library Catalog Record
- Wernicke, P. (1904). Über den kartographischen Vierfarbensatz. Mathematische Annalen, 58(3), 413–426. Full-text available online (subscription required).
- Wilson, J. (1976). New light on the origin of the four-color conjecture. Historia Mathematica, 3(3), 329–330. Full-text available online (subscription required).
- Wilson, R. A. (2002). Graphs, colourings and the four-colour theorem. Oxford: Oxford University Press. Library Catalog Record
- Wilson, R. J. (2002). Four colours suffice: how the map problem was solved. Princeton, NJ: Princeton University Press. Library Catalog Record
- Wilson, R. J. (2014). Four colours suffice: how the map problem was solved. Princeton, NJ: Princeton University Press. Library Catalog Record
Additional Items:
- Allaire, F. R. (1977). On reducible configurations for the four colour problem. Winnipeg, Manitoba. Citation info available through ProQuest
- Allaire, F., & Swart, E. R. (1978). A systematic approach to the determination of reducible configurations in the four-color conjecture. Journal of Combinatorial Theory, Series B, 25(3), 339–362. Full-text available online (subscription required)
- Appel, Kenneth, & Haken, W. (1978). The Four-Color Problem. In Mathematics Today Twelve Informal Essays (pp. 153–180). Springer, New York, NY. Full-text available online (subscription required)
- Bigalke, H.-G. (1988). Heinrich Heesch: Kristallgeometrie, Parkettierungen, Vierfarbenforschung. Basel: Birkhauser. Library Catalog Record
- Fritsch, R. (1990). Wie wird der Vierfarbensatz bewiesen? Der Mathematische Und Naturwissenschaftliche Unterricht, (43), 80–87. Full-text available online
- Gonthier, G. (2005). A computer-checked proof of the four colour theorem. Full-text available online
- Robertson, N., Sanders, D. P., Seymour, P., & Thomas, R. (1996). A new proof of the four-colour theorem. Electronic Research Announcements of the American Mathematical Society, 2(1), 17–25. Full-text available online (subscription required)
- Robertson, N., Sanders, D. P., Seymour, P., & Thomas, R. (1997). Discharging cartwheels. Full-text available online
- Robertson, N., Sanders, D. P., Seymour, P., & Thomas, R. (1997). Reducibility in the Four-Color Theorem. Full-text available online
- Steinberger, J. (2010). An unavoidable set of ?-reducible configurations. Transactions of the American Mathematical Society, 362(12), 6633–6661. Full-text available online (subscription required)
- Stromquist, W. R. (1975). Some Aspects of the Four Color Problem. Ann Arbor. Full-text available online
- Tymoczko, T. (1979). The Four-Color Problem and Its Philosophical Significance. The Journal of Philosophy, 76(2), 57–83. Full-text available online
- Whitney, H., & Tutte, W. T. (1972). Kempe Chains and the Four Colour Problem. In Hassler Whitney Collected Papers (pp. 185–225). Birkhäuser Boston. Full-text available online (subscription required)
- Wilson, R. (2016). Wolfgang Haken and the four-color problem. Illinois Journal of Mathematics, 60(1), 149–178. Full-text available online (subscription required)